
The Pythagorean scale factors
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Note: If you were to repeat this scheme, but begin on a different f(n) 
as your f(0), you would get a completely different set of notes!  This 
scale will not transpose.  It generates a unique "key".

Note that octave notes would occur at

  f(n)=2^n  ---->
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This means that an octave note occurs when (3/2)^n = 2^m for some integers n & m.
This NEVER happens - there is no exact solution. Octave notes are NOT included.



Many compromise fixes have been proposed and used ===>

Example compromise fix (the "Meantone" scale):

Tweak the value 3/2 a little to a new value r so that there exist m and n integers such that:

r^n = 2^m .  Equivalently, m = n Log(r)/Log(2)

If r were exactly 3/2 , this would give m = n*0.58496 .

Try n=1,2,3... until m ~ an integer  --> 
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n=12 gives m = 7.02.  So, using n=12 & m=7 . Then -->

r=2^(m/n) gives r=1.498307 as the compromise to 3/2.

Thus, using f(n)= r^n, with r=1.498307,  we will get an octave at n=12, giving a 

scale of 12 intervals per octave.  This is a "well tempered" scale, but this scale 

won't transpose.  It generates a single unique key.

But, importantly, this exercise shows that 12 notes per octave would be a 
serendipitous choice!



The "even tempered" scale

Guarantee transposability by imposing a constant frequency ratio of adjacent notes:

f(n+1)/f(n) = a constant, for all n.  For a scale of 12 notes per octave this means-->

f(n+1) =2^(1/12)* f(n)  or f(n) = 2^(n/12)f(0)
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Note that the "fifth" ratio of 3/2 is well approximated by f(7)=1.498 *f(0).  Because 
of the constant ratio scheme, EVERY note has such a "fifth" companion note exactly 
7 intervals away.

Note further that the five particularly important intervals are all well 
approximated ==> the octave (2/1)=2.0, a just fifth (3/2)=1.5, a just 
fourth (4/3)=1.33, a just major third (5/4)=1.25 and a just major sixth 
(5/3)=1.67.

Finally, note that generating a second piano of notes by using any 
other already established note as your f(0) will repeat the identically 
same piano of notes.



Consonant f/f0 ratios in 12 note octave

Modern Names Just Even Temp (2^n/12 * f0 )

C  ==> E THIRD 5/4 = 1.25 1.26

C ==> F FOURTH 4/3 = 1.33 . . . 1.335

C ==> G FIFTH 3/2 = 1.5 1.498

C ==> A SIXTH 5/3 = 1.66 . . . 1.682

C ==> C’ OCTAVE 2/1 = 2.0 2.0

The 2^1/12 ratio (guarantees transposability) adds  the black key notes (and D & B).


