=0,115	$f(n) \coloneqq \left(\frac{3}{2}\right)$	$-\int^n g(n) \coloneqq \frac{f(n)}{2}$	-h(n)	$) \coloneqq \frac{f(n)}{4}$	$j(n) \coloneqq \frac{f(n)}{8}$
[0]	[1]	[0.5]	Ī	0.25	[0.125]
1	1.5	0.75		0.375	0.188
2	2.25	1.125		0.563	0.281
3	3.375	1.688		0.844	0.422
4	5.063	2.531		1.266	0.633
5	7.594	3.797		1.898	0.949
6	11.391	5.695		2.848	1.424
$= \begin{vmatrix} 7\\8 \end{vmatrix} f(n) =$	17.086	$g(n) = \begin{bmatrix} 8.543 \\ 12.814 \end{bmatrix}$	h(n) =	4.271	$j(n) = \begin{bmatrix} 2.136 \\ 2.204 \end{bmatrix}$
0	20.023	12.014	()	6.407	3.204
9	38.443	19.222		9.611	4.805
10	57.665	28.833		14.416	7.208
11	86.498	43.249		21.624	10.812
12	129.746	64.873		32.437	16.218
					24.327
13	194.62	97.31		48.655	
1415Note: If yas your f	291.929 437.894 you were to r (0), you wou	$\begin{bmatrix} 145.965\\218.947 \end{bmatrix}$ repeat this scheme, here a completely of	but begin on lifferent set	72.982 09.473 a different f	(n)
14 15 Note: If y as your f	291.929 437.894 you were to r (0), you wou	repeat this scheme, h	but begin on lifferent set	72.982 09.473 a different f	(n)
1415Note: If yas your f	291.929 437.894 you were to r (0), you wou	$\begin{bmatrix} 145.965\\218.947 \end{bmatrix}$ repeat this scheme, here a completely of	but begin on lifferent set	72.982 09.473 a different fi of notes! Th	(n)
1415Note: If yas your f	291.929 437.894 you were to r (0), you wou	$\begin{bmatrix} 145.965\\218.947 \end{bmatrix}$ repeat this scheme, here a completely of	but begin on lifferent set	72.982 09.473 a different foof notes! Th	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely c se. It generates a un	but begin on lifferent set	$\begin{bmatrix} 1\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 4\\ 2\\ 4\\ 2\\ 4\\ 2\\ 4\\ 2\\ 4\\ 2\\ 4\\ 2\\ 4\\ 2\\ 2\\ 4\\ 2\\ 2\\ 4\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	$\begin{bmatrix} 145.965\\218.947 \end{bmatrix}$ repeat this scheme, here a completely of	but begin on lifferent set	72.982 09.473 a different foof notes! Th 1 2 4 8	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set	$ \begin{bmatrix} 2.982 \\ 09.473 \end{bmatrix} $ a different for fores the formation of notes the formation of not not notes the formation of note	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely c se. It generates a un	but begin on lifferent set o hique "key".	$ \begin{bmatrix} 1 \\ 2 \\ 4 \\ 16 \\ 32 \end{bmatrix} $	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set	72.982 09.473 a different for of notes! Th 1 2 4 8 16 32 64	(n)
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982 \\ 09.473 \\ a different for frontes! The for a constant of the second se$	(n)
14 15 Note: If y as your fi scale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$\begin{bmatrix} 1 \\ 2 \\ 4 \\ 32 \\ 64 \\ 128 \\ 256 \end{bmatrix}$	(n)
14 15 Note: If y as your fi scale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982\\ 99.473\\ a different from the set of notes! The set of notes! The set of notes is a set of note set of notes set of notes is a set of note set of notes is a set of note set of notes is a set of note set of notes set of notes is a set of note set of notes is a set of notes set of notes is a set of notes set of notes is a set of notes set $	(n) is
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982 \\ 99.473 \\ \hline a different for frontes! The for frontes! The for frontes! The for frontes! The for front for fron$	$\begin{bmatrix} 36.491 \\ 54.737 \end{bmatrix}$ (n) is
14 15 Note: If y as your fi scale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982\\ 99.473\\ a different from the set of notes! The set of notes! The set of notes is a set of note set of notes set of notes is a set of note set of notes is a set of note set of notes is a set of note set of notes set of notes is a set of note set of notes is a set of notes set of notes is a set of notes set of notes is a set of notes set $	$\begin{bmatrix} 36.491 \\ 54.737 \end{bmatrix}$ (n) is
1415Note: If yas your fiscale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982 \\ 99.473 \\ \hline a different for frontes! The for frontes! The for frontes! The for frontes! The for front for fron$	$\begin{bmatrix} 36.491 \\ 54.737 \end{bmatrix}$ (n) is
14 15 Note: If y as your fi scale will	291.929 437.894 you were to r (0), you wou not transpos	145.965 218.947repeat this scheme, I Id get a completely of se. It generates a un se would occur at	but begin on lifferent set o hique "key".	$ \begin{array}{c} 72.982 \\ 99.473 \\ \hline a different for frontes! The for frontes! The for frontes! The for frontes! The for front for fron$	$\begin{bmatrix} 36.491 \\ 54.737 \end{bmatrix}$ (n) is

Many compromise fixes have been proposed and used ===>

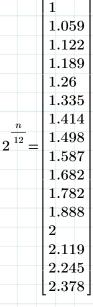
Example compromise fix (the "Meantone" scale):

Tweak the value 3/2 a little to a new value r so that there exist m and n integers such that:

 $r^n = 2^m$. Equivalently, m = n Log(r)/Log(2)

If r were exactly 3/2, this would give m = n*0.58496.

Try n=1,2,3... until m ~ an integer -->

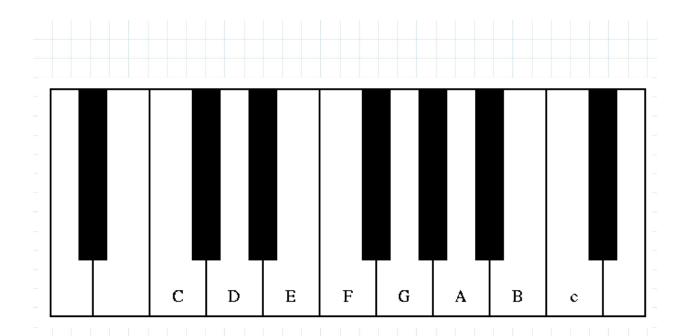

$m(n) = n\left(\ln(1.5)\right)$	$\begin{bmatrix} 0 \\ 0.585 \end{bmatrix}$
$m(n) \coloneqq n \cdot \left(\frac{\ln(1.5)}{\ln(2)}\right) \dots >$	1.17
	1.755
	2.34
	2.925
	3.51
	() 4.095
	$n(n) = \begin{vmatrix} 4.095 \\ 4.68 \end{vmatrix}$
	5.265
	5.85
	6.435
	7.02
	7.605
	8.189
	$\lfloor 8.774 \rfloor$
n=12 gives m = 7.02. So, using n=12 & m=7 . Then> r=2^(m/n) gives r=1.498307 as the compromise to 3/2. Thus, using f(n)= r^n, with r=1.498307, we will get an octave at n=	12, giving a
scale of 12 intervals per octave. This is a "well tempered" scale, but t	his scale
won't transpose. It generates a single unique key.	
But, importantly, this exercise shows that 12 notes per octave serendipitous choice!	e would be a

The "even tempered" scale

Guarantee transposability by imposing a constant frequency ratio of adjacent notes:

f(n+1)/f(n) = a constant, for all n. For a scale of 12 notes per octave this means-->

 $f(n+1) = 2^{(1/12)*} f(n)$ or $f(n) = 2^{(n/12)}f(0)$



Note that the "fifth" ratio of 3/2 is well approximated by f(7)=1.498 * f(0). Because of the constant ratio scheme, EVERY note has such a "fifth" companion note exactly 7 intervals away.

Note further that the five particularly important intervals are all well approximated ==> the octave (2/1)=2.0, a just fifth (3/2)=1.5, a just fourth (4/3)=1.33, a just major third (5/4)=1.25 and a just major sixth (5/3)=1.67.

Finally, note that generating a second piano of notes by using any other already established note as your f(0) will repeat the identically same piano of notes.

Created with PTC Mathcad Express. See www.mathcad.com for more information.

Consonant f/fo ratios in 12 note octave

Modern Names		Just	Even Temp (2 ⁿ /12 * fo)
C ==> E	THIRD	5/4 = 1.25	1.26
C ==> F	FOURTH	4/3 = 1.33	1.335
C ==> G	FIFTH	3/2 = 1.5	1.498
C ==> A	SIXTH	5/3 = 1.66	1.682
C ==> C'	OCTAVE	2/1 = 2.0	2.0

The 2^1/12 ratio (guarantees transposability) adds the black key notes (and D & B).

Created with PTC Mathcad Express. See www.mathcad.com for more information.