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The Problem with Average Acceleration Problems

ROBERT J. SCTAMANDA
Gannon College

Erie, Pennsylvania 16501
(Received 23 October 1970)

Problems in iniroduclory mechanics concerning the
average acceleration of a particle undergoing general recti-
linear motion are a source of much confusion to the student.
They can be made the source of much light if a clear dis-
tinction 1s made between lime averages and space averages.
The term “‘average force” suffers from the same ambigusty
and needs similar clarification. This ts especially necessary
if one wants to express the impulse-momentum and work-
energy theorems v terms of an average force.

The equivalent of the following problem has
appeared from time to time in various introductory
textbooks! at the conclusion of the chapter on the
kinematics of rectilinear motion with constant
acceleration: A car decelerates from 60 ft/sec to rest
over a distance of 100 fi. What was its average
acceleraiton?

The student flips back through the chapter and
finds that the average acceleration of a body is
defined as the total change in velocity divided by
the total elapsed time

d=Av/At. (1)
From this definition, he correctly reasons that,
even though the acceleration varied in some un-
known fashion, the same velocity change could
have been achieved in the same time at a constant
acceleration equal to the average acceleration.
This he quickly sees as the very definition of
average acceleration as given by the textbook.

Here the serious student pauses, looks again at
the data given (velocity change and distance of
travel) and seriously wonders how to obtain the
actual elapsed time In order to calculate the
average acceleration. However, with unflinching
faith, he assures himself that the problem must be
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solvable by using the formulas developed in the
chapter, namely the equations of constant ac-
celeration. He then vaguely concludes that the
actual motion must be equivalent to motion at
constant acceleration, if the average acceleration
is used, and proceeds to caleulate

2dax =v—v¢?,

a=—2500/200= —12.5 {t/sec?.

(2)

A glance at the back of the book confirms this
result and the average student hurries on to the
next problem (having learned some all-too vague,
if not completely erroneous, physics).

However, the rare, inquiring student might be
traumatically puzzled as he hears himself say:
“Now that I know the average aceeleration, I ean
use its definition to calculate the elapsed time
during the actual stopping of the car

At=Av/a=>50/12.5=4 sce.

But I know that a car can be braked from 50 ft/sec
to rest in a distance of 100 ft in a variety of ways
and, in fact, using many different amounts of
time! Yet, I can also see that all of these methods
would involve the same average acceleration; but
that would require the time to be 4 sec—but it
could easily be made 5 sec—but . ..”

The paradox is removed by recognizing the
vagueness of the term average acceleration. In the
mind of the student there is, justifiably, no vague-
ness to this term beecause the textbook author has
precisely defined it as given above in Eq. (1). The
trouble is that what the author has defined is the
time average of the acceleration, and what he is
asking for in the problem is the space average of
the acceleration. In fact, with the data given, the
time average of the acceleration is not determined
and cannot be caleulated; neither is the actual
elapsed time determined or calculable.? The
student was correct in saying that all rectilinear
motions going from 50 ft/sec to rest in a distance
of 100 ft have a common average acceleration, but
it is the space averaged acceleration, not the &ime
averaged acceleration.



I find this problem extremely useful for bringing
home the difference between time and space
averages and for emphasizing that in general the
adjective average must be further specified before
it has a precise meaning, Without this realization,
students are puzzled in later courses by such
concepts as “‘the average electric field on the
surface (or throughout the volume) of a sphere,”
ete.

A discussion of the general notions of time,
distance, surface, and volume averages arises
naturally out of a proper treatment of the ele-
mentary kinematics problem under consideration
here. Furthermore, a diseussion of this problem
uncovers some interesting statements which can
be made about general rectilinear motion in terms
of only average accelerations. It is precisely the
use and abuse of these general statements which is
under analysis here.

By defining the time averaged aceeleration as

a;= (1/At) [adt = Av/ At, (3)
one directly shows that the equation
p(t) =ve+a,d (4)

is valid for any rectilinear motion, so long as a, is
the value of the acceleration averaged over the
time interval {=0 to {. Thus, a, is that constant
acceleration which would produce the same
velocity change in the same fime as oceurred in the
actual motion (but not the same distance).

Similarly, by defining the space averaged
acceleration as

a,=(1/Az) [adx=(1/Ax) [vdy, (5)
one directly shows that the equation

202 = 0% — vt (6)
is valid for any rectilinear motion, so long as &, is
the value of the acceleration averaged over the
space interval x=0 to z. (We of course are de-
fining x=0 as the position of the body at ¢=0.)
Thus, d, 1s that constant aceeleration which would
produce the same velocity change in the same
distance as occurred in the actual motion (but not
the same fime).

Average Acceleraiion Problems

In short, all motions involving the same veloeity
change in the same time have a common value of
i but not a common value of d, and not a com-
mon distance of travel; while all motions in-
volving the same velocity change in the same
distance of travel have a common value of @,, but
not a common value of @; and not a common time
of travel.

Using vector notation, the above definitions
and results can be generalized to apply to general
three-dimensional particle motion, and not just to
rectilinear motion:

a,At= [adt,
V(t) =V0+ézt; (7)
a,-Ar=fa.dr= [v.dv,

22+ AT =12 —yg (8)

Note that the concept of the dot produect is used in
the general definition of space averaged accelera-
tion in order to produce a useful concept.? It will
prove to be especially useful for stating the work-
energy theorem in terms of the space average of a
varying force {cf. below),

The third equation of constant reetilinear
aceeleration,

z(1) =l 3at?, (9)

is not valid for general rectilinear motion no
matter which average value of the acceleration is
used for a. The counterpart of this equation for
general reetlinear motion involves the use of both
a; and @, and can be obtained by eliminating v (#)
between Eqs. (4) and (6) to obtain
2(t) = (G¢/ @)oot (G:/ds) 30,157, (10)

where, as in the other results, the values of @; and
d, depend on the particular type of motion in-
volved and are not even constants of the motion,
i.e., both average values will in general change as
the motion evolves in space and time.

It is a curious result that the displacement
equation

z(t) = vt +308, (11)
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with d; used for @, is incorrect by an over-all
factor d./a@.. As a further curiosity, the three-
dimensional version of Eq. (10) may be obtained
from Egs. (7) and (8):
a,- Ar=3a22+ve-ad. (12)
In particle dynamics the term average force
often suffers from the same ambiguity as does
average acceleration in kinematics. A similar
clarification results from making a clear distinec-
tion between the time average and the space
average of a varying force. Through Newton’s
second law, the impulse-momentum and work-
energy theorems can then be stated in terms of the
time average and the space average, respectively,
of a varying force:

F.At=[Fdi, (13)
F.At=A(mv), (14)
F.-Ar=[F-dr, (15)

F.-Ar=A(Lm?). (16)

The relation of these results of dynamics, in
terms of average forces, to the previously dis-
played results of kinematics, stated in terms of
average accelerations, is obvious. This suggests
that the above discussion of kinematics in terms of
average accelerations might be pedagogically
useful for removing some of the mystery that
seems to surround the student’s first encounter
with the above theorems of dynamics. Accelera-
tions, velocities, and displacements are intuitively
more concrete and more easily visualized (and
averaged) than are the notions of force, impulse,
momentum, work, and kinetic energy. It seems
that mueh of the very important connection
between dynamics and kinematics, probably
because it can be so simply and quickly stated, is
lost in the usual treatment. Since we find it so
useful to speak of average forces in dynamies, why
not prepare the ground by giving a more complete
and precise treatment of average accelerations in
kinematics?

Our above choices for the definitions of space
averaged accelerations and forces in the general
three-dimensional case require further discussion.
These definitions are not the most useful choices
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for all cases. For instance, in the case of a particle
whose speed varies around a closed path, the space
averages of the vector acceleration and force, as
defined above, become large without limit (i.e.,
are undefined) as Ar approaches zero.

It is of course the use of the dot product
between two vectors on the left-hand side of the
defining equations which introduees this difficulty.
The dot produet is required on the right-hand side
in order to generate the very useful concept of
kinetic energy, so that fhe right-hand side is in its
most useful form. Since the intuitive notion of
“‘average’” expects the average quantity to play
the same role in the left-hand expression as the
varying quantity plays under the integral sign on
the right-hand side, the above choice is a very
natural one.

At the price of this symmetry, one might rather
define the space average of a varying force through
the equation

FS=[F.dr=A(im?), (17)
where S is the total scalar distance traveled as
measured along the trajectory, and not the final
displacement vector, which was used in our
previous definition. Note that the space averaged
force, as thus defined, is a scalar; in general no
direction is associated with it. This latter defini-
tion is what most of us have in mind when we use
the term ‘‘space averaged force” or when we
state the work-energy theorem in terms of an
“gverage force.”

The important point is that, in the case of
vectors, even the specification ‘““‘space average”
is imprecise and still ambiguous. A choice of
definition must be made and clearly stated before
the term is used by textbook or lecturer. I might
suggest that our previous choice, Eq. (15), be
termed ‘‘displacement average”’, and that the
concept defined by Eq. (17) be termed “distance
average,” since either concept might be suggested
by the general term ‘“‘space average.”

Finally, but perhaps most importantly, I find
that even those students who beforehand were
bored by a seemingly trivial textbook problem are
genuinely fascinated by the above kinematical
discussion, all of which is easily visualized—at
least for the ease of rectilinear motion. If time
allows, this problem can be the subject of a lively



class discussion, with the instructor playing only a
minimum and Socratic type role, until finally the
light is turned on: the ambiguity of the word
average.

! Two recent and in many other ways excellent examples
are: F. Bueche, Iniroduction io Physics for Scientist ond
Engineers (McGraw-Hill, New York, 1969), p. 61,
probs. 6, 8, 9 (the latter two problems even ask for the
elapsed time) ; and I. M. Freeman, Physics: Principles and
Insights (MceGraw—Hill, New York, 1968), p. 133, prob.
5.12.

?This last phrase is very concretely illustrated by
drawing velocity vs time curves for several possible
motions involving the same velocity change over the same
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distance (area under the curve), but using different
elapsed times. For easy comparison, make one curve the
curve of motion with constant acceleration, i.e., a straight
line.

3 It is recognized that the above choice for the definition
of the space averaged acceleration of three-dimensional
particle motion is a technical definition and does pot
always coincide with what the layman might have in mind
when he uses this term (consider what it says about
motion around part or all of a circle at constant or varying
speed—what might the layman mean by the term in
such cases?). Our choice is motivated solely by its useful-
ness in producing the general result which follows. This is a
pointed lesson in the vagueness of the bare term average
and in the power of the concept when precisely and
usefully defined.
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The Hamiltonian for a charged particle in an electro-
magnetic field is usually presented in terms of the electro-
magnetic potentials A and ¢. However for discussions of a
large number of alomic and molecular properties, il is
more convenient to have available a Hamrltonian which is
expressed directly in terms of ihe more familior electric
Jield E and magnetic induction B. Here it 18 shown that
one can consiruct a generalized velocity-dependent potential
Junction of E and B, which yields the correct expression
for the Lorentz force (truncated afier the electric quad-
rupole, magnelic dipole lerms). From this generalized
potential the corresponding classical Lagrangion and
Hamillonian are obtained directly in terms of E and B.
The transition to a quantum mechanical [ E, B-dependent
Hamiltonian operator vs constdered, and we list a variety
of, static as well as ttme-dependent, atomic and molecular
properties which can be discussed in a unified way using
this Hamiltontan as @ starting point.

I. INTRODUCTION

"The classical Hamiltonian for a charged particle
in an electromagnetic field is conventionally
derived by way of the so-called electromagnetic
potentials, the vector potential A(r, ¢) and the
scalar potential ¢(r, ¢), which are functions of
position r and time ¢. (See, e.g., Goldstein! whose
notation will be followed closely.) However, it
has been known since the work of Goeppert-
Mayer,? that this [A(x, {), ¢(r, t) J-dependent
Hamiltonian can be transformed into an equiva-
lent form which contains the electric field veetor
E(r, ¢) and the magnetic induction B(r, ¢), the
latter formulation of the Hamiltonian having
more direct appeal to physical intuition (see
Refs. 3-6 for more recent discussions of this
canonical transformation).

It is the purpose of this communication to
demonstrate that one can, in fact, derive the
LE, B]-dependent Hamiltonian directly without
any recourse to the electromagnetic potentials
A(x, t) and ¢(r, £). The present derivation starts
(Sec. II) from a generalized (velocity-dependent)
potential, in terms of E(r, {) and B(x, t), based
upon an intuitive application of electromagnetism.
It is then shown that this generalized potential
reproduces the correct expression for the foree
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