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Using the Huygens integral an exact, closed-form solution is obtained for the axial radiation field
of a spherical shell section source. The calculation is appropriate to an introductory, calculus-
based physics course. Applications include ultrasonic inspection transducers and optical

diffraction.

The radiation field of a plane, circular source is com-
monly calculated from the Huygens integral in acoustics
courses. Typically a far-field solution is obtained in terms
of Bessel functions. The same calculation is performed in
optics as a scalar diffraction problem. A related problem is
the field of a section of a spherical shell. The axial radiation
field of this source admits of an exact Huygens solution in
closed form, which is valid at all axial distances. To my
knowledge this cannot be said of any other radiation source
of finite extent. The calculation is very straightforward and
the result involves only a trigonometric function. There is
thus much to recommend this problem as an early pedago-
gical example of radiation field calculations, appropriate
even to the calculus-based, introductory physics course.

Such a source has a common application in the concave
“focused” piezoelectric transducers used in the ultrasonic
inspection of metals, especially welds. In optics this calcu-
lation can be applied to the diffraction of a spherical wave
by a circular opening in an opaque plane.

Figure 1 illustrates the source as a section of a spherical
shell of radius R. The center of curvature of the shell is the
point labeled C. The coordinate z of the axial field point P is
measured from the shell vertex O. The parameters 4 and b
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are measures of the aperture size and are defined in the
figure.

Application of the Huygens' model is straightforward.
Each elemental area, dS, of the shell generates a spherical
wave with an amplitude proportional to the elemental area.
Each of these waves travels a distance r to the field point P,
arriving with its amplitude diminished by a factor of ',
and its phase advanced by (w? — &r).

- Because our field point P is on the axis, we may choose
the elemental area to be a circular annulus of radius R sin 6
and thickness R d0, i.e., we take dS = 27R ? sin 8 d6. This
is permissible because each point on this dS is the same
distance r from the axial field point P.

The observed radiation field at P is then calculated as the
superposition of the waves from all of the annuli compris-
ing the shell. This calculation is an integral over the surface
of the shell. Thus the Huygens integral giving the relative
field strength at the axial point P is

U(zt) = Jr" expli(wt — kr)127R * sin 6 d6.

This integral® is tractable after the law of cosines is used to
eliminate @ in favor of r:
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Fig. 1. A spherical shell section radiation source, of radius R. The coordi-
nate of the axial field point P is z, measured from the shell vertex O.

P=R>+(z~R)>+2R(z— R)cos 8
2rdr= —2R(z— R)sin 8d@

This transformation of variable yields
U(z,t) = — 27R exp(imt)

X(z—R)™ ‘f " exp( — ikr)dr,

where 7, is the distance from the rim of the shell to the
field point P.
Performing the integration,

U(z,t) = — 27R exp(iot) (z— R) ™!
X (— ik) " '[exp( — ikry, ) —exp( — ikz)].

This intermediate result should be explicitly displayed and
discussed as a perfect example of Young’s unsuccessful ra-
diation theory.? That is, except for the 1/(r — R) ampli-
tude factor, U(z,¢) can be expressed as the superposition of
only two waves, one originating at the vertex of the shell
(the point O) and the other at its rim. This expression also
shows us what to expect of U(z): a two-source interference
pattern of maxima and zeros, modulated by the 1/{z — R)
amplitude factor.
The wave intensity is proportional to U *U:

I(z) =C[RA/(z— R)Psin*[7/A (2= tym) ],

where A = 277/k, and all constant factors are absorbed into
C.

Referring to Fig. 1, r,;,,, can be evaluated in terms of z, R,
and A by eliminating b between the two geometric relations
(obvious from the figure):

Pm=b>4+(z—h)’andR*=5b2>+ (R—h)>.

]
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Fig. 2. A plot of the text equation for I(2), the field intensity of an ultra-
sonic source, with R = 30 mm, 2 = 10 mm; and A = 4 mm.

These yield
Fim =VZ° — 2zh + 2Rh .

Using this result, the intensity becomes
I(z)=C[RA/(z—R))?

xsin?[#/A (z — 22 — 2zh + 2RK ) ].

It is not difficult to show that this final expression is also
valid for the convex case, if both 4 and R are entered as
negative quantities.

Figure 2 is a plot of 7(z) in which C is taken as 1 and the
parameter values are appropriate to an ultrasonic trans-
ducer. The two-source interference pattern, modulated by
the (z — R) ~? factor, is apparent. This same factor con-
centrates a large fraction of the radiated energy under the
principal maximum near the point z = R, accounting for
the name “focused” transducer. The maxima on the far
side (z> R) of the principle maximum are broad and shal-
low, only the first is (barely ) perceptible on this scale.
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For an introductory course, the complex exponential can be replaced by a
sine or cosine. The integral is still easily performed, but the reduction of
the result will require some algebraic manipulation using trigonometric
identities, exactly as in the treatment of two-source interference.

*Thomas Young, “The theory of light and colour,” Philos. Trans. R. Soc.
London 20, 12-48 (1802).
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