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A single mathematical model describes disparate phenomena involving colliding masses, interacting
capacitors, or ‘“dueling’” springs. In each case the dissipation of a definite fraction of system energy
is mandated when a conservation principle and a final state constraint are imposed. The
mathematical ‘‘oneness’” points not only to the physical similarity but also to a notable physical
difference among the various phenomena. An important by-product is an enrichment of the usual
treatment of two particle collisions. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

There is a particular textbook problem!™ which continues
to trouble both physics and engineering students long after
they have accepted the mathematical solution which has
been thoroughly detailed in this journal.>® This problem is
periodically the subject of heated discussions on electronic
bulletin boards and ‘‘lists,”” where it has most recently ap-
peared under the subject heading ‘‘The Capacitor Conun-
drum.”

The standard treatment of the problem is summarized in
Fig. 1. A capacitor is charged by an emf. The emf is then
disconnected and the charged capacitor is connected to an
uncharged capacitor, with which it shares its charge. The
final equilibrium state is determined by the conservation of
charge and the requirement of a common final potential dif-
ference across the two capacitors. A calculation of the sys-
tem electrostatic energies in both the ‘‘before’” and ‘“after”’
states reveals that a definite fraction of the original system
energy has been dissipated; and this fraction depends only on
the ratio of the two capacitance values.

A tractable transient solution is obtained by adding the
circuit resistance R to the mathematical model and applying
Kirchhoff’s loop rule (energy conservation). The solution to
the resulting differential equation (with applicable boundary
conditions) exactly accounts for the dissipated energy as the
Ohmic heat losses incurred during the transient period. As
the final equations in Fig. 1 show, this result is independent
of the value of the circuit resistance R and is true even in the
limit as R is chosen arbitrarily close to zero.

Electromagnetic radiation can also be invoked as the
mechanism of energy dissipation;’ the energy “‘loss’’ is the
same. The students’ ‘‘conundrum’ seems to be that the
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amount of energy dissipation is independent of the particu-
lars of the dissipation mechanism. The dissipation of a defi-
nite fraction of system energy seems to be an overriding
mandate to which particular mechanisms must adjust, re-
gardless of the nature of the mechanism or the value(s) of its
parameter(s). Students are wont to speculate (perhaps only
subconsciously) that this is the result of some mysterious,
unspoken property peculiar to electromagnetic phenomena.

This paper attempts to illuminate this ‘‘mystery”’ by
showing that this behavior is not peculiar to interacting ca-
pacitors or to electromagnetic phenomena. The same math-
ematical model also describes some purely mechanical sys-
tems, which also operate under a mathematically identical
energy dissipation mandate. In the course of unifying these
disparate phenomena under a single mathematical model, we
will also uncover some subtle physical differences among
these systems.

II. MECHANICAL ANALOGUES

Figure 2 describes a mechanical phenomenon which
should be quite familiar to the student: a one-dimensional,
totally inelastic collision between two ‘‘point’” masses, as
viewed from the frame in which one of the masses is initially
at rest. Here, the governing physics consists of the conserva-
tion of momentum and the requirement of a common final
velocity. It is only a change of notation that distinguishes the
mathematical statement of this physics from the governing
physics of the interacting capacitors (conservation of charge
and a common final potential difference). Furthermore, the
same change of notation is all that distinguishes the kinetic
energy of the mass system (1/2) Em,-v,z from the electrostatic
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Fig. 1. The standard textbook treatment shows that a charged capacitor is
forced to dissipate a definite fraction of its electrostatic energy when it
shares its charge with a second capacitor. The transient analysis includes the
circuit resistance R and accounts for this energy loss, but the amount of
energy dissipated is independent of the value of R.

energy of the capacitor system (1/2) 3C,;V?. The “‘isomor-
phism’’ is complete and exact. The mandated energy dissi-
pation of two capacitors forced to a common static voltage is
mathematically no more, or less, mysterious than the kinetic
energy dissipation mandated by the requirement that two in-
teracting masses achieve a common velocity.

Figure 3 describes a system of two (massless) Hooke’s
law springs, with compliances C1 and C2, whose behavior
will also be modeled by this same mathematics. The far ends

vt v2=0
Initial State Q O
m1 m2

—>

vl'=v2'
Final State

m1i  m2

Conservation of Momentum: P4'+P2' =P1 -> mqvq +ma vy =mqvq

Common Final Velocity Constraint:  v{'=v2'

Fig. 2. In a totally inelastic collision a definite fraction of the system kinetic
energy must be dissipated. The mathematical model is identical to that of the
interacting capacitors, except for a change of notation.
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Initial State c2
c1 F2=0
—
F1
Final State c1 Cc2
—
F1'=F2

Conservation of Elongation: X4'+X2' =X1 > CqFq' +CaF2' =C4Fq

Common Final Force Constraint: Fy'=Fg'

Fig. 3. The distal ends of the two (lossy and massless) springs are a fixed

- horizontal distance apart. The left spring is held stretched, connected to the

adjacent end of the other (relaxed) spring, and then let go. A definite fraction
of the system elastic energy must be dissipated as the two springs share
elongation. This is analogous to the sharing of charge by capacitors; the
mathematical model is identical. In the drawing of the initial state the two
springs are shown vertically displaced from each other only for clarity.

of the springs are attached to two fixed walls. In the initial
state, the left spring is held in a stretched condition by an
applied force F1 (analogous to an emf charging a capacitor);
the spring on the right is relaxed (analogous to an uncharged
capacitor). In this ‘‘initial state’’ the two springs just fill the
space between the fixed walls. The springs are then made to
interact by connecting their adjacent ends together and re-
moving F1. The springs will then share elongation (X), just
as the capacitors share charge and the colliding masses share
momentum. The fixed outer walls guarantee a fixed total
elongation X +X, (for each spring X=CF; both X and F
are positive for an elongation and negative for a compres-
sion). The final state is determined by “‘conservation of elon-

-gation’’ and the equality of the two spring forces; the system

elastic energy is given by (1/2) 2C,F?. Again the isomor-
phism is exact; whatever mechanisms are involved in achiev-
ing the final static state, they must involve the dissipation of
a definite fraction of system energy.

The “‘isomorphism’’ of the mathematical models of these
three phenomena is made explicit in Table 1. The first seven
rows of Table I should be self-explanatory; the eighth row
displays a transient differential equation for each of the phe-
nomena. For the case of the interacting capacitors, this equa-
tion was simply reproduced from Fig. 1; a change of notation
then produced the differential equations for the colliding
masses and for the interacting springs. The physical imple-
mentation of these equations (perhaps in terms of ‘‘dash-
pots’” between the masses or springs) can be the subject of
fruitful class discussion. This will augment the standard
treatment of the inelastic collision, which typically suffers
from a narrow concern for only the end states and ignores the
mechanism or the transient behavior by which these states
might be achieved.

The ninth row of Table I exploits the mathematical iso-
morphisms still further. It is natural to consider viewing the
two-mass collision from an alternative inertial frame,
through the velocity transformation entered in the ninth row
of Table I, under the ‘‘inelastic collision’’ column. That
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Table I. Mandated energy dissipation. Three different phenomena, one common mathematical model.

Inelastic collision

Interaction of

Interaction of

of masses capacitors lossy springs
State mass velocities capacitor spring forces
variables voltages
Ui; Uy ViV, Fi;F,
Fixed masses capacitances compliances
parameters myimy Cy;C, C,=1K;;
C,=1K,
Conserved momentum charge clongation
quantity mv+myv, c,\vi+C,V, C\F1+C,F,
Initial ) v,=vV F,=F
conditions v,=0 V,=0 F,=0
Required common velocity common potential common spring
final difference force
condition U=V, V=V, F,=F,
E: kinetic energy clectrostatic elastic potential
System energy energy
Energy (172)Zmv} (12)2C;v? (1/2)2CF?
AE/E: maf(my+m;) Co/(C1+Cy) Col(C1+C)
fractional

energy loss

Transient
differential
equation

vit+mR dv/dt—v,=0

V,+C,RAV,/dt—V,=0

F,+C,RdF,/dt—F,=0

Transformation
to alternative
frame

vi=v;+u

Vi=V,+U

F!=F+G

same equation, with the appropriate changes of notation, is
then entered in the ninth row under the ‘‘capacitor’” and
“‘spring’’ columns. In the capacitor case this transformation
adds a fixed voltage U to the (before and after) capacitor
voltages; in the spring case the transformation adds a fixed
force G to the (before and after) spring forces. The point to
be made here is that (as we already know for the collision
case) the governing equations are invariant with respect to
these transformations, while the state variables will take on
transformed before and after values. Lively class discussion
can be provoked by considering just how these transforma-
tions might be physically achieved (e.g., how about simply
pulling apart the exterior walls of the spring system to a new,
fixed spacing; or imposing a uniform electric field upon a
system of parallel plate capacitors?).

II. A GRAPH IS WORTH A THOUSAND WORDS

It is useful to represent the state of each of these systems
by a point in the two-dimensional space spanned by the state
variables defined in the first row of Table 1. Taking the col-
liding masses as a paradigm, a plot of the conservation of
momentum equation P;+P,=P (a constant) is a straight
line with a slope of —1, as shown in Fig. 4. Of course, this
same plot describes conservation of charge for the capacitor
case and conservation of elongation for the spring case. Our
before state is on the vertical axis (P,=0). The straight line
then shows the only states allowed to the system by the
conservation of momentum. If one then draws the curve join-
ing all states having the same system energy (row 6 of Table
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I) as this initial state, an ellipse results. The eccentricity of
the ellipse is completely determined by the mass ratio. For
equal masses the ellipse becomes a circle, the case shown in
Fig. 4. Curves of lesser/greater system energy are concentric
circles (in general, ellipses) of smaller/larger extent. The

Momentum Space; M1l =M=2

N
I
N

- Initial state

/

Final state

Momentum P1

-40 =20 0 n 40

Momentum P2

Fig. 4. The momentum space of two identical particles in one-dimensional
motion. The straight line, with a slope of —1, connects states of a fixed
system momentum. Each circle connects states of a fixed system kinetic
energy. The initial and final states of a totally inelastic collision are indi-
cated by the labeled arrows.
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course of the system point representing our totally inelastic
collision of two equal masses can be seen to be a motion
from the initial state (0,P) along the straight line P, + P,=P
to the final state (P/2,P/2). This clearly demands moving to
a circle of lower system energy, the smaller circle drawn in
Fig. 4.

This momentum space plot also presents a graphical visu-
alization of the transformation to an alternate inertial frame
(row nine of Table I). Under such a transformation, the line
of constant momentum simply ‘‘slides’ vertically up or
down, maintaining a slope of — 1. Of particular interest is the
line representing the system as viewed from its center of
mass, a line through the origin. This is the line representing
zero system momentum and allows the dissipation of all of
the system kinetic energy; the circle of final energy states
having degenerated into a point at the origin; in the capacitor
case this represents a system which begins with equally, but
oppositely, charged capacitors. It is most instructive to have
students elaborate further upon the properties of these plots
as applied to the capacitor and spring systems.

IV. THE ELASTIC POSSIBILITY

It is interesting to apply the plots of Fig. 4 to the perfectly
elastic collision of two equal masses in one dimension. Now
both system momentum and system kinetic energy must be
conserved. Figure 4 shows that there is only one other state
where the two conservation plots (the larger circle and the
straight line) intersect i.e., on the horizontal axis, where the
two particles have simply exchanged velocities. And of
course algebra shows that this is indeed the final state for the
elastic interaction. But there is a problem. How does the
system get from the initial to the final state? Figure 4 clearly
shows that there is no continuous path of states connecting
these two states which would conserve both momentum and
energy throughout the interaction. Indeed, there is no other
state in the neighborhood of the initial state which conserves
both kinetic energy and momentum.

Since the interaction must obey Newton’s laws, it is re-
quired that momentum be conserved, and the system must
move along the straight line of constant momentum which
connects the initial and final states. The first part of this
process is from (0,P) to (P/2,P/2), which is the complete
path for the inelastic process. During this first step, the elas-
tic system will lose as much kinetic energy as momentum
conservation allows, just as does the totally inelastic colli-
sion. But, whereas the inelastic process ends here (P/2,P/2),
the elastic process keeps traveling along the constant mo-
mentum line and terminates at the final state (P,0). During
this second part of the elastic process the system gains back
all of the kinetic energy which was given up during the first
stage.

So the elastic process also demands some mechanism for
sinking the particles’ kinetic energy, but now this mechanism
must be elastic, i.e., it must store this energy in some other
form and then return it to the particles as kinetic energy. Just
as the inelastic dissipation mechanism can be modeled by a
dashpot, so the elastic mechanism can be modeled by a
spring; it may, in fact, be a potential energy function. In fact,
this treatment brings home the realization of just how our
introduction of the potential energy function enabled our first
(and purely mechanical) energy conservation theorem, since
it is now obvious that kinetic energy cannot be continuously
conserved in a one-dimensional, two particle interaction.
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V. CONCLUSION

An important illumination is the realization that the one-
dimensional interaction (whether elastic or inelastic) of two
masses cannot consist solely of an exchange of momentum
and kinetic energy between two point entities; there must be
present another ‘‘degree of freedom’” in the form of a source
and/or sink of energy. Put another way, such an interaction
cannot conserve both momentum and kinetic energy
throughout the process, so that any conservation of energy
theory must invoke transformations of kinetic energy to al-
ternate energy forms. Analogous statements apply to the
cases of interacting capacitors and springs. In particular the
observation that two capacitors, initially charged to different
potentials, cannot come to a common static potential without
dissipating electrostatic energy, is isomorphic to the state-
ment that two masses, confined to one dimension and ini-
tially having different velocities, cannot come to a common
velocity without the dissipation of kinetic energy.

VI. FURTHER SPECULATIONS

A student research project might speculate about extend-
ing some of these considerations to collisions in three dimen-
sions. For example, can a three-dimensional collision be-
tween two point particles continuously conserve both
momentum and kinetic energy?

The students might also speculate upon possible analogs
of the perfectly elastic collision for the interacting capacitors
and for the interacting springs. It appears that only the mass
system has a static (nonoscillatory) elastic solution. The col-
liding masses can momentarily interact and then go their
separate ways with different fixed velocities and no further
interaction, while the connected capacitors are forced to a
common voltage (and hence a totally inelastic process), and
the connected springs must exert equal forces. Among the
three systems here defined, only the colliding mass system
admits of an elastic mode. In this respect, it is the phenom-
enon of the colliding masses which stands out as unique, not
the phenomenon of the interacting capacitors.

Finally, one might challenge students to conceive a system
of two interacting inductors which are described by this same
mathematical model, using E = (1/2)LI? for the energy of an
inductance L carrying a current I, and ®=LT for the mag-
netic flux through a circuit (mutual inductance effects would
be ignored, just as ‘‘mutual capacitance’’ effects were ig-
nored in the original problem). The system would begin with
a nonzero current in only one of the inductors (a closed cir-
cuit), analogous to beginning with only one of the capacitors
charged. By pondering over the first few rows of Table I the
students should come to the realization that a gedanken
method (don’t worry about practicalities) must be contrived
so that the inductors will either (a) share this fixed current
and attain a common flux or (b) share a fixed amount of flux
and attain a common current. They should further realize that
this is tantamount to seeking a conservation law, analogous
to the conservation of charge/momentum, which (under
some contrived constraints) will make this mathematical
model apply to interacting inductors. The quest will be very
illuminating, even if a physically feasible solution is not un-
covered. Any proposed solutions (even if only mathematical
and nonphysical) should be added to Table I as a new col-
umn. One can then speculate on the possible physical content
of the transient differential equation and the transformation
to an alternate frame (the entries in rows eight and nine).
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Let me add two final observations. The very close paral-
lelism between these three systems, in particular the isomor-
phism between all three entries for AE/E in Table I, is ulti-
mately due to the fact that all three energy expressions are
quadratic.

If these energies were instead proportional to V”, the iso-
morphism would still hold and the mandated fractional
change in energy would now be given by AE/E=1—{C,/
(C1+CH)I" 1 Of course, the transient differential equations
would also change, since they are simply statements of the
conservation of energy.’ Second, the phenomena considered
here demand the presence of a mechanism for the dissipation
of system energy. This might be compared, and contrasted,
with the phenomenon of pair production, in which a y par-
ticle, no matter how high its energy, cannot turn into an
electron—positron pair without losing momentum, so that
something else must be present to take up the ‘‘dissipated’’
momentum.
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We describe a new geometry for a Rutherford scattering experiment which utilizes an annular
detector and movable target. The apparatus provides both a good counting rate and simple data
reduction. Both the angular dependence and the absolute value of the cross section can be obtained
for a reasonable range of scattering angles. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

Rutherford scattering is potentially an attractive part of an
advanced undergraduate laboratory, but it is a technically
demanding exercise. The several designs that have appeared
in this journal and elsewhere over the years!™® represent vari-
ous compromises intended to balance the needs for accurate
cross-section measurements, reasonable count rates, wide an-
gular range, and simple data analysis. In this paper, we de-
scribe a new geometry using an annular detector and mov-
able target which leads to a more favorable compromise on
some of the important parameters. In particular, we can
tightly collimate the incident beam and keep the solid angle
of the detector small, allowing for easy data reduction, while
still maintaining a high count rate and good accuracy with a
modest (1 mCi) source. A secondary benefit is that the solid
angle of the detector increases with the scattering angle, par-
tially offsetting the rapid drop in the Rutherford cross sec-
tion.

II. DESIGN CONSIDERATIONS

As shown schematically in Fig, 1, the sensitive area of the
detector is a fixed annulus. The desired scattering angle 8 is
then set by choosing the distance d between target and de-
tector plane. If N incident alpha particles strike a foil of
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thickness ¢ containing n scattering centers per unit volume,
the average number, dN, of particles scattered into the solid
angle d() around () is given by

AN=Nnt 22 40
=Nnt Eh— (1)

The Rutherford cross section for a particle of energy £ and
charge 2e scattering off a massive nucleus of charge Ze is

do q*  _,

70~ 16 Sin (9/2), )]
where

q=2Ze*E. 3

Data analysis is aimed at comparing the observed counting
rate AN/A() for the annulus as a function of d with the
expected rate according to Eq. (1).

For the simplest analysis, it is reasonable to assume that
the beam divergence and beam diameter are small, so that
the incident alpha particles form a parallel beam which scat-
ters from a point. Simple geometry and an analytic integra-
tion are then sufficient to obtain &(d) and AQ(d), so that
AN/AQ can be plotted as a function of sin*(6/2). Assuming
further that A() is small, this ratio should be a good estimate
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